viernes, 5 de agosto de 2011

Resina epoxi

Los compuestos de resinas epoxídicas han tenido amplia aceptación y su uso se ha extendido a las actividades donde se requiere un polímero de mucha resistencia mecánica. Son materiales termofraguables que se tornan duros y no fusibles bajo la acción de agentes acelerantes. Los compuestos epoxi son un grupo de éteres cíclicos u óxidos de alqueno (alquileno) que poseen un átomo de oxígeno unido a dos átomos de carbono adyacentes (estructura oxirano). Estos éteres reaccionan con los grupos amino, oxhidrilo y carboxilo (enduredores, así como con los ácidos inorgánicos, para dar compuestos relativamente estables.
Actualmente con el elevado número de las distintas resinas básicas y el avance conseguido en los sistemas de aplicación, es difícil imaginar un área tecnológica donde las resinas epoxi no estén siendo utilizadas.
Un endurecedor o agente de curado es un producto que cuando se añade a una sustancia macromolecular determinada en cantidades superiores a las catalíticas, reacciona con ésta y la convierte en un polímero irreversible que poseerá una serie de características perfectamente definidas, de las que anteriormente carecía. Entre los sistemas de importancia industrial que utilizan endurecedores se encuentran los sistemas de resinas epoxídicas.
La tensión del enlace del anillo oxirano es muy elevada, siendo por ello de una alta reactividad tanto química como bioquímica, por lo que es fácilmente atacado por la mayoría de compuestos de adición.
Según el origen de los grupos oxiranos, la familia de las resinas epóxicas se dividen en cinco grupos fundamentales:
- Éteres glicéricos
- Ésteres glicéricos
- Aminas glicéricos
- Alifáticas lineales
- Cicloalifáticas
Comercialmente los éteres son los más importantes, ya que el 95% de las resinas utilizadas son glicidil-éteres obtenidos por reacción de la epiclorhidrina con el bisfenol A (2-2-bis(p-hidroxifenil)propano) con formación de una molécula de diglicil éter de bisfenol. La razón del uso de estas materias primas es por una parte la alta reactividad de la epiclorhidrina que permite su combinación con cualquier molécula portadora de hidrógenos activos, así como su fácil obtención por petroquímica. El bisfenol A es comparativamente barato al serlo los productos de partida para su síntesis: acetona y fenol. Variando las reacciones estequiométricas entre la epiclorhidrina y el bisfenol A, se obtiene una molécula del tipo:

Siendo n el grado de polimerización y que puede variar desde n=1 hasta n=12. Según la proporción de los reaccionantes, se forman mezclas variables de resinas de alto y bajo peso molecular. La parte repetida de la molécula tiene un peso molecular de 284. De ahí los pesos de las moléculas sucesivas serán:
n = 0; P.M. = 340, n = 1; P.M. = 624, n = 2; P.M. = 908, etc., lo que confiere a las resinas distintas características. Cuando el peso molecular es superior a 908, son sólidas, mientras que resinas con menor peso molecular son líquidas o semisólidas.
Las resinas comerciales son mezclas de diferentes pesos, de manera que suele conocerse el peso molecular promedio pero no la distribución de los oligómeros en la muestra.
Además del peso molecular, hay otros parámetros que caracterizan las resinas epoxi:
Equivalente epoxi: Peso de resina que contiene un equivalente gramo de epoxi. Suele considerarse como la mitad del peso molecular medio.
Índice de hidroxilo: Peso de resina que contiene un equivalente gramo de hidroxilo.
Contenido de cloro reactivo: Es el cloro presente en forma de cloruro hidrolizable, como consecuencia de la presencia de trazas clorhídricas en el proceso de síntesis.
Color de la resina: Como resultado de los grupos fenólicos libres y que por oxidación forman quinonas coloreadas.
Punto de fusión: Que al ser de una mezcla no se presenta en un intervalo muy estrecho, adoptándose la temperatura a la cual la resina un grado de fluidez arbitrario.
Viscosidad y contenido en volátiles.
Estos son algunos ejemplos de resinas epoxi:
Resinas epoxi a base de bisfenol A: son los más utilizados por ser versátiles y baratos, proviene de la reacción de epiclorhidrina y bisfenol A, pueden ser líquidas, semisólidas o sólidas dependiendo del peso molecular.
Resinas epoxi a base de bisfenol F y/o novolac: La sustitución de bisfenol A por bisfenol F proporciona a las resinas epoxi mayor entrecruzamiento y mejor comportamiento mecánico, químico y térmico, sobretodo si es curado con aminas aromáticos o anhídridos.
Resinas epoxi bromadas: son resinas a base de epiclorhidrina y tetrabromobisfenol A, las cuatro moléculas adicionales de bromo confiere a las resinas la característica de autoextinción.
Resinas epoxi flexibles: Son resinas que poseen largas cadenas lineales sustituyendo los bisfenoles por poliglicoles poco ramificados, son resinas de baja reactividad que normalmente son utilizadas como flexibilizantes reactivos en otras resinas, mejorando le resistencia al impacto,


HISTORIA
Los primeros intentos comerciales para preparar resinas de epiclorhidrina se hicieron en 1927 en los Estados Unidos. El crédito para la primera síntesis de resinas epoxi basadas en bisfenol-A es compartida por Pierre Castan de Suiza y S.O. Greenlee de los Estados Unidos en 1936. El trabajo de Castan fue autorizado por Ciba Ltd de Suiza, que pasó a convertirse en uno de los tres principales productores de resina epoxi en todo el mundo, comercializándolas bajo el nombre de Araldite. La parte comercial de epoxi de Ciba se separó y más tarde vendido a finales de 1990 y ahora es el unidad de negocios de materiales de avanzados de Huntsman Corporation de los Estados Unidos. El trabajo de Greenlee fue para la empresa Devoe-Reynolds de los Estados Unidos. Devoe-Reynolds, activa desde los primeros días de la industria de la resina epoxi, fue vendido a Shell Chemical (ahora Hexion).

SÍNTESIS DE RESINAS EPÓXICAS
En la síntesis de resinas epoxi existen dos etapas.
En primer lugar hay que sintetizar un diepoxi y en segundo lugar hay que entrecruzarlo con una diamina.

SINTESIS DE DIEPOXI
Esta etapa consiste en una polimerización por crecimiento en etapas. Se obtiene el prepolímero mediante bisfenol A y epiclorhidrina:

En primer lugar el NaOH reacciona con el bisfenol A para dar la sal sódica de bisfenol A.
Un oxígeno de la sal tiene tres pares de electrones sin compartir, al encontrarse con la epiclorhidrina, el cloro de ésta comparte dos electrones con el oxígeno pero al ser tan electronegativo tiende a acapararlos. Entonces el oxígeno dona un par de electrones al carbono y éste rompe el enlace con el cloro liberándolo.
Se tiene una molécula similar a bisfenol A, con un único grupo epoxi, y una molécula de NaCl.
El tamaño del prepolímero depende de la relación epiclorhidrina/bisfenol A en la mezcla de reacción. Si la relación es de dos se tiene:
Y la reacción se detiene porque no hay más sal sódica de bisfenol A con la que reaccionar.
Si la relación es menor que dos, no toda la sal sódica de bisfenol A podrá reaccionar con la epiclorhidrina. Suponiendo una relación 3/2, cuando todas las moléculas de epiclorhidrina hayan reaccionado, tendremos una relación de uno:
Entonces ambas moléculas podrán reaccionar entre sí para dar lugar a esta otra:
Obteniendo un dímero que es una sal sódica. Un par electrónico del oxígeno atacará al hidrogeno del agua (producida al formar la sal de bisfenol A) quitándole uno de ellos:
El oxígeno forma un alcohol y otra vez se obtiene NaOH y la reacción continúa. Cuanta más epiclorhidrina tengamos con respecto a la sal de bisfenol A, mayor será el oligómero que obtendremos.

CURACIÓN DEL DIEPOXI CON UNA DIAMINA
Una vez obtenidos los prepolímeros diepoxi habrá que unirlos. Esto se realiza agregando una diamina. El oxígeno del epoxi atrae los electrones de los átomos de carbono vecinos, y a su vez los grupos amino le ceden electrones al átomo de carbono que está en el extremo de la molécula. Una vez hecho el carcono abandona los electrones que compartía con el oxígeno. El enlace entre el carbono y el oxígeno se rompe y se forma uno nuevo entre el carbono y el nitrógeno de la amina. Por tanto queda una carga negativa sobre el oxígeno y una positiva sobre el nitrógeno.
Entonces los electrones del oxígeno atacan al hidrogeno unido al nitrógeno y forman un enlace separándolo, pero dejando neutro al nitrógeno, el oxígeno a su vez también queda neutro al ganar un protón y formar un alcohol.
El grupo amino aún tiene un hidrógeno de sobra y puede reaccionar con otro grupo epoxi, exactamente de la misma manera.
Pero al ser una diamina, los grupos amino del otro extremo de la diamina pueden también reaccionar con dos grupos epoxi. En definitiva, al final se obtienen cuatro prepolímeros epoxi unidos a una sola molécula de diamina.
También los otros extremos de los prepolímeros diepoxi están unidos a otras moléculas de diamina. De este modo, todas las moléculas de diamina y todas las moléculas de diepoxi se unen formando una sola molécula gigante.

TIPOS DE AGENTES CURANTES
Los endurecedores pueden clasificarse en dos grandes grupos: catalíticos y polifuncionales.
Los catalíticos actúan como iniciadores de una homopolimerización de las resinas, mientras que los polifuncionales, en cantidades estequiométricas, actúan como reactivos o comonómeros dando lugar al entrecruzamiento de las moléculas de resina a través de ellos mismos.
Los agentes polifuncionales son de estructura química diversa, caracterizándose por la presencia de hidrocarburos activos. Los de más amplia utilización incluyen aminas alifáticas primarias y secundarias, poliaminas primarias y secundarias, ácidos polibásicos y anhídridos.
Pueden clasificarse también en función de su temperatura de trabajo: agentes de curado en frío y agentes de curado en caliente. El primer grupo actúa a temperaturas ordinarias incluso en atmósferas húmedas. Los agentes de curado en caliente no reaccionan a temperatura ambiente, pudiendo por consiguiente trabajar con mezclas estables de resina y endurecedor. Sólo cuando la temperatura se eleva alrededor de 120ºC se produce el entrecruzamiento.
Si la operación de curado ha sido correcta no deberán quedar grupos epoxi ni exceso de reactivos.

Los agentes endurecedores más comunes pueden clasificarse de la siguiente forma:
1.- Aminas: Éstas pueden ser aminas alifáticas primarias, secundarias o terciarias, poliaminas aromáticas o aminas cicloalifáticas.
-. Aminas alifáticas: Son en su mayoría líquidos de baja viscosidad con un olor característico e irritante. En general son moléculas pequeñas y muy volátiles, que básicamente reaccionan a través de sus radicales de hidrogeno libres
-. Poliaminas aromáticas: En la actualidad están siendo poco utilizadas a su alto grado de toxicidad. Generalmente son aminas sólidas que necesitan ser fundidas y mezcladas en caliente con una resina y posteriormente curadas a altas temperaturas. Debido a este proceso son emitidos muchos vapores amínicos corrosivos y tóxicos. Una vez curado, este sistema proporciona buena resistencia química, eléctrica, excelente resistencia a la hidrólisis y buena resistencia térmica.
-. Aminas cicloalifáticas: a diferencia de las alifáticas poseen anillos aromáticos esto hace que presenten menor volatilidad, mayor estabilidad a la luz, menor reactividad y mejor retención de colores. En estado puro encontramos grandes dificultades en el curado a temperatura ambiente, debido a su baja reactividad.

2.- Aductos de aminas: Son mezclas de resinas que han reaccionado parcialmente y que tiene un exceso de amina. Con esto obtenemos una cadena mayor y más volátil, poseen una relación de mezcla menos crítica, generan menor exotermia, curan en forma más completa y poseen menor toxicidad.
3.- Poliamidas: Estos compuestos actúan de forma similar a las poliaminas alifáticas. Son obtenidos a través de reacciones de dimerización de aminas alifáticas con diácidos o ácidos grasos de cadena larga, resultando polímeros de alto peso molecular que varían de un líquido viscoso hasta un sólido.

4.- Anhídridos aromáticos y cicloalifáticos: Estas sustancias requieren temperaturas elevadas para reaccionar, no reaccionan a temperatura ambiente. Poseen un gran tiempo de latencia una vez incorporado a la resina y proporciona una excelente resistencia térmica.

5.- Resinas de formaldehído: En este grupo están el aminoresinol (urea y melamina-formaldehído), la resina fenólica (fenol-formaldehído).

REACCIONES DE ENDURECIMIENTO Y CURADO
Las resinas por sí mismas no presentan ninguna propiedad técnica útil hasta que son endurecidas efectivamente mediante reacciones químicas de doble enlace. Su estructura química ha de ser transformada en un entramado o red tridimensional, constituida por enlaces covalentes en todas las direcciones. Puesto que las resinas base son lineales, es preciso, normalmente en el momento de la aplicación, añadir un agente de entrecruzamiento adecuado que transforme el polímero lineal soluble en un polímero entrecruzado insoluble e infusible. Este proceso se conoce con el nombre de curado, entrecruzamiento o endurecimiento de la resina.
El conjunto de resina epoxi y los productos con los que ha de reaccionar para endurecer es denominado formulación epoxi.
El mecanismo de curado implica la interacción del anillo oxirano, fundamentalmente con hidrógenos activos, dando como resultado la apertura del ciclo. El mecanismo de esta reacción es de tipo iónico.
La fase de curado es el punto más crítico de la tecnología epoxi.
El mecanismo principal de las reacciones de curación se puede resumir a continuación:
a) Polimerización por los grupos epoxi: esta reacción está facilitada por la acción catalítica de las aminas terciarias, es decir compuestos que no poseen hidrógeno reactivo.
b) Reacción de adición con aminas primarias, en la cual reacciona un grupo epoxi con una amina que contenga un átomo de hidrógeno reactivo.
c) Esterificación de los ácidos grasos (ácidos monocarboxílicos), que primordialmente son reacciones de adición y condensación.
d) Reacción con anhídridos ácidos (por ejemplo ácido ftálico), en la que el grupo oxhidrilo de la resina reacciona con el grupo CO del anhídrido.
e) Reacción con resinas fenol formaldehído (sobresolar), en la que los grupos oxhidrilo fenólicos y metilol de las resinas fenólicas reaccionan con los grupos epoxi.
f) Reacción con amino-resinas (urea formaldehído, melamina-formaldehído), en las que los grupos metilol (-CH2OH) o metilol-butilados reaccionan con los grupos epoxi y con la resina; grupos OH (oxhidrilo), como en e), junto con la reacción de una amina primaria y secundaria (RNH2 y -NH-), como en b).
g) Reacción de los grupos oxhidrilo con isocianatos, en la que el grupo OH de la resina reacciona con el grupo N:C:O del isocianato.
Todas las reacciones con los grupos epoxi son exotérmicas, siendo la temperatura un factor decisivo en la velocidad de estas reacciones aumentándola al hacerlo la temperatura, de ahí que sea necesario un preciso control de la misma para evitar una degradación del material. Las reacciones a), b) y g) pueden realizarse a temperatura ambiente, pero las demás requieren aplicación de calor para que se realicen los dobles enlaces. Los productos de reacción c) -ésteres epoxídicos- son resinas útiles y requieren curación, mediante oxidación con aire seco o mediante dobles enlaces (condensación), con amino resinas (urea formaldehído, melamino-formaldehído) a elevadas temperaturas.
Hay agentes de curado que actúan a temperatura ambiente aunque algunos en forma tan lenta que un entrecruzamiento efectivo podría requerir años. En la práctica, el tiempo de gel o pot life, esto es, el período en el cual la resina es manejable, puede variar en un amplio intervalo, lo cual es muy útil por la posibilidad que presenta de elegir la formulación más idónea en cada caso.

PROPIEDADES DE LAS RESINAS EPOXI
El elevado número de resinas epoxi y endurecedores dan lugar a una amplia gama de propiedades en los distintos productos. No obstante, se puede lograr ampliar esta gama con la incorporación de los llamados modificadores, que van a potenciar la versatilidad y utilidad de las resinas epoxi.
Los agentes modificadores más comunes son:
Diluyentes: Permiten reducir la viscosidad de la formulación, facilitando su aplicación y aumentando la capacidad para el contenido de cargas inertes. Pueden ser inertes o reactivos. Los diluyentes inertes, o no reactivos, reducen la viscosidad de forma apreciable. El disolvente permanece en el curado pero no está químicamente unido a él. Los diluyentes reactivos son los de mayor aplicación. Habitualmente son compuestos monoepoxídicos, como la misma epiclorhidrina, que reaccionan con el sistema quedando químicamente unidos a él.
Flexibilizadores: Cuya misión es reducir la rigidez del sistema y permitir que éste pueda tener deformaciones bajo carga. La flexibilización se puede conseguir introduciendo cadenas de gran longitud unidas covalentemente a la red durante el curado, o bien incorporando al polímero largas cadenas moleculares que permanezcan sin reaccionar con la resina transformada.
Cargas: utilizadas para abaratar o mejorar algunas propiedades de la formulación. Suelen ir incorporadas en la resina o en el endurecedor. En ocasiones pueden llegar a suponer hasta un 80% del producto final, de aquí estriba su importancia. Su naturaleza es muy diversa, puede ser sílice, cuarzo, grafito, sulfato de bario, fibra de vidrio, etc., siendo las cargas con gránulos redondeados las que suponen el mínimo consumo de formulación. Dentro de las cargas, los agentes tixotrópicos confieren a la formulación una estructura capaz de soportar elevados esfuerzos cortantes, evitando su descuelgue. Las más comunes son la mica, bentonitas o fibra de vidrio.
Pigmentos: su misión es mejorar el aspecto de la formulación con coloraciones diversas. Pueden emplearse pigmentos inorgánicos, tales como el óxido de titanio, negro de humo, cromatos; o colorantes, azul y verde de ftalociamina. La modificación con otras resinas potencia las posibilidades de las resinas epoxi, al unirse las ventajas de distintos sistemas. Este es el caso del poliéster y acrílicas.

APLICACIONES
Las aplicaciones de materiales en base a epoxi son extensas e incluyen revestimientos, adhesivos y materiales compuestos como los que usan fibra de carbono y fibra de vidrio de refuerzo (a pesar de poliéster, viniléster y otros termoestables resinas se utilizan también para plástico reforzado con vidrio). La química de las resinas epóxicas, y la gama de variaciones de curado disponible en el mercado permite a los polímeros se producen con una amplia gama de propiedades. En general, las resinas epoxi son conocidos por su excelente adherencia química y resistencia al calor, de buenas a excelentes propiedades mecánicas y muy buenas propiedades como aislantes eléctricos. Muchas de las propiedades de los epoxis se puede modificar (por ejemplo, resinas epoxi con relleno de plata, confiere conductividad eléctrica, aunque epoxis son típicamente aislante de la electricidad). También existen variaciones que ofrecen un elevado aislamiento térmico, o la conductividad térmica combinada con una alta resistencia eléctrica para aplicaciones de electrónica. Otro uso que se le han dado a las resinas epoxi son en el ámbito de las artes plásticas para el moldeo de miniaturas.

Pinturas y acabados
Los epoxis se usan mucho en capas de impresión, tanto para proteger de la corrosión como para mejorar la adherencia de las posteriores capas de pintura. Las latas y contenedores metálicos se suelen revestir con epoxi para evitar que se oxiden, especialmente en alimentos ácidos, como el tomate. También se emplea en decoraciones de suelos de alta resistencia, fabricación y recubrimiento de piletas, frentes para automóviles, etc.
Recubrimiento de piletas

Adhesivos
Las resinas epoxídicas son un tipo de adhesivos llamados estructurales o de ingeniería el grupo incluye el poliuretano, acrílico y cianoacrilato. Estos adhesivos se utilizan en la construcción de aviones, automóviles, bicicletas, esquíes. Sirven para pegar gran cantidad de materiales, incluidos algunos plásticos, y se puede conseguir que sean rígidos o flexibles, transparentes o de color, de secado rápido o lento. Los adhesivos epoxi puede ser desarrollado para adaptarse a casi cualquier aplicación.
En general, si el secado de un adhesivo epoxídico se realiza con calor, será más resistente al calor y a los agentes químicos que si se seca a temperatura ambiente. La resistencia a la tracción de este tipo de adhesivos puede llegar a superar los 350 kg/cm², lo que les convierte en el adhesivo más resistente del mundo. La fuerza de los adhesivos epoxi se degrada a temperaturas superiores a 350ºF (177ºC).
Algunas resinas epoxi se curan por la exposición a luz ultravioleta. Los epoxis son comúnmente utilizados en óptica, la fibra óptica y odontología
Adhesivo de dos componentes
Cola epoxi de alta conductividad térmica
Herramientas industriales y materiales compuestos
Las resinas epoxi se usan tanto en la construcción de moldes como de piezas maestras, laminados, extrusiones y otras ayudas a la producción industrial. Los resultados son más baratos, resistentes y rápidos de producir que los hechos de madera, metal, etc. Los compuestos de fibras y epoxi, aunque son más caros que lo de resinas de poliéster o de éster de vinilo, producen piezas más resistentes. Refuerzos típicos son fibra de vidrio, carbono, kevlar, y boro
Tanque de combustible acero con superficies exterior e interior con capa de compuestos epóxicos ricos en aluminio (exterior) y en zinc (interior).
Sistemas eléctricos y electrónicos
En generación eléctrica encapsulan o recubren lo motores, generadores, transformadores, reductoras, escobillas y aisladores, para protegerlos. Además, las resinas epoxi son excelentes aislantes eléctricos y se usan en muchos componentes, para proteger de cortocircuitos, polvo, humedad, etc.
En la industria electrónica se usan con profusión para el encapsulado de los circuitos integrados y los transistores, también se usan en la fabricación de circuitos impresos. El tipo de circuito impreso más frecuente FR-4 no es más que un sándwich de capas de fibra de vidrio pegadas entre sí por resina epoxi. También se usan en el pegado de las capas de cobre en las placas y forman parte de la máscara antisoldante de muchos circuitos impresos.
Encapsulado epoxi de circuito híbrido en una placa de circuito impreso
Aplicaciones náuticas
Se pueden encontrar resinas epoxi en ferreterías y grandes almacenes, generalmente en forma de adhesivos de dos componentes. Se venden también en tiendas de náutica para reparación de barcos. Los epoxis no suelen ser la última capa del recubrimiento de un barco porque les afecta negativamente la exposición a luz ultravioleta (UV). Se suelen recubrir con barnices marinos o coberturas de gel de poliéster que protegen de los rayos UV.
Se distinguen fácilmente porque la relación de mezcla de los epoxis es de 1:1 mientras que el poliéster suele ser de 10:1. Aunque en algunos tipos de resina epoxi la relación de catalización también es del 10:1.
Reparación y recubrimiento de cascos de embarcaciones





Fuentes:
www.eis.uva.es
en.wikipedia.org
www.pslc.ws
www.revistamundonautico.com
noviplast.com.ar
www.masterbond.com

No hay comentarios:

Publicar un comentario en la entrada