sábado, 23 de noviembre de 2013

PVC clorado (CPVC)

Introducción
El policloruro de vinilo clorado (PVC-C o CPVC: chlorinated polyvinyl chloride) es un termoplástico producido por cloración del policloruro de vinilo (PVC) homopolímero. Los usos incluyen tuberías de agua fría y caliente, y el manejo de líquidos industriales. El CPVC fue comercializado por vez primera por Noveon en la década del 1960 y ha sido probado su valor en una variedad de aplicaciones industriales en las cuales son apreciadas su excelente resistencia química y alta temperatura de uso. Además de tuberías, están disponibles otros productos de CPVC para la manipulación fluidos en la industria, incluyendo bombas, válvulas, ductos, etc.

Estructura química y síntesis
La estructura química del CPVC consiste en un polímero de PVC en el cual se han sustituido algunos de sus átomos de hidrogeno por átomos de cloro similar a la mostrada a continuación:
Estructura química del CPVC
El CPVC es el PVC (policloruro de vinilo) que ha sido clorado a través de una reacción de cloración de radicales libres. Esta reacción suele ser iniciada por la aplicación de energía térmica o UV.
Descomposición atómica de la molécula de cloro (iniciación)
En el proceso, el gas cloro se descompone en cloro de radicales libres que se hace reaccionar con PVC en un paso posterior a la producción, esencialmente, reemplazando una parte del hidrógeno en el PVC con el cloro.
Cloración del PVC
El átomo de hidrógeno liberado reacciona con una molécula de cloro para formar cloruro de hidrogeno y otro átomo de cloro.
Descomposición atómica de la molécula de cloro (propagación)
El nuevo átomo de cloro ataca a la molécula del polímero y reemplaza otro átomo de hidrogeno, y esta secuencia continua mientras haya en el sistema cloro e hidrógeno en la cadena del polímero.
Dependiendo del método, una cantidad variable de cloro se introduce en el polímero permitiendo una forma de medida para ajustar las propiedades finales. El contenido de cloro puede variar de un fabricante a otro, la base puede ser tan baja como 56,7% en PVC hasta un máximo de 74% en masa, aunque la mayoría de las resinas comerciales tienen un contenido de cloro de 63% a 69%. A medida que el contenido de cloro en CPVC es mayor, su temperatura de transición vítrea (Tg) se incrementa significativamente. Bajo condiciones normales de funcionamiento, el CPVC se vuelve inestable en un 70% de la masa de cloro.
Varios aditivos se introducen en la resina con el fin de hacer al material procesable. Estos aditivos pueden consistir de estabilizadores, modificadores de impacto, pigmentos y lubricantes.

Proceso de cloración
La cloración es un proceso en el cual cloro en estado líquido o gaseoso es adicionado al proceso para la obtención de un producto clorado. Existen tres procesos comúnmente utilizados presentando ventajas y desventajas cada uno de ellos:
Proceso anhidro (en masa)
Este método se realiza en ausencia de solvente o suspensión. Se realiza en un lecho fluidizado. Presenta las desventajas de no poderse lograr un control de la temperatura pudiéndose presentar sobrecalentamiento, fusión o aglomeración del polímero y una posible decoloración del material.
Proceso por solución (con solvente)
El polímero es disuelto en un disolvente orgánico y posteriormente se adiciona cloro para producir el CPVC. Las principales desventajas de este método se encuentran en una baja solubilidad del polímero en el disolvente (costoso) por lo que es requerido elevadas cantidades del misma para la correcta disolución y la dificultad de recuperación del polímero y solvente una vez clorado.
Proceso sin solvente (Suspensión acuosa)
Hoy en día, este es el proceso más empleado y viable económicamente para la cloración del PVC. Sus principales ventajas radican en la posibilidad de un control adecuado de la temperatura del proceso y una adecuada relación de reacción. Además la reacción exotérmica y calor de disolución del HCl formado puede reducir los costos energéticos de este proceso. Las desventajas radicarían en los tiempos de reacción lentos y el costo de secado del producto.
Esquema del proceso de cloración en suspensión
Propiedades y características
El CPVC comparte la mayoría de las características y propiedades del PVC. También es fácilmente trabajable, incluyendo el mecanizado, soldadura, y la formación. Debido a su excelente resistencia a temperaturas elevadas, el CPVC es ideal para construcciones de auto-apoyo, donde las temperaturas de hasta 90°C (194°F) están presentes. La capacidad de doblar, la forma y soldadura del CPVC permite su uso en una amplia variedad de procesos y aplicaciones.

Tabla de propiedades típicas del CPVC
Propiedad
Norma
Unidad
Valor
Propiedades físicas
Densidad
ISO 1183
g/cm3
1,56
Absorción de agua 23°C
ISO 62
%
0,03
Absorción de agua 100°C
ISO 62 
%
0,55
Propiedades mecánicas
Resistencia a la tracción
ISO 527
MPa
55
Módulo elástico (Young)
ISO 527
GPa
2,5
Resistencia a la flexión
ISO 178
MPa
104
Módulo de flexión
ISO 178
GPa
2,9
Resistencia a la compresión
ISO 604
MPa
70
Módulo de compresión
ISO 604
GPa
1,4
Resistencia al impacto Izod
ISO 180
J/m
80
Dureza (Rockwell)
ISO 2039
-
119
Propiedades térmicas
Conductividad térmica
ISO 8302
W/mK
0,14
Coeficiente de expansión térmica
ISO 11359
10-4 m/m-°C
0,61
Temp. de distorsión por calor
ISO 75
°C
103
Propiedades eléctricas
Resistencia dieléctrica
IEC 243
kV/mm
49
Const. dieléctrica a 60 Hz, -1°C
IEC 250
-
3,7

El CPVC puede soportar el agua corrosiva a temperaturas mayores que las de PVC, por lo general de 40 ° C a 50 ° C o superior, lo que contribuye a su popularidad como material para los sistemas de tuberías de agua en viviendas, así como la construcción comercial.
La principal diferencia mecánica entre el CPVC y PVC, es que el CPVC es mucho más dúctil, permitiendo una mayor flexión y resistencia a la compresión. Además, la resistencia mecánica del CPVC lo convierte en un candidato viable para reemplazar a muchos tipos de tuberías metálicas en las condiciones en que la susceptibilidad del metal a la corrosión limita su uso.
El CPVC es similar al PVC en resistencia al fuego. Suele ser muy difícil de encender y tiende a autoextinguirse, cuando no se aplica una llama de forma directa
Debido a su contenido de cloro, la incineración del CPVC, ya sea un incendio o en un proceso de eliminación industrial, puede dar lugar a la creación de las dioxinas.

Tabla comparativa con el PVC
Propiedad
PVC
CPVC
Propiedades físicas
Densidad (g/cm3)
1,41
1,56
Resistencia a la tracción (psi)
7500
80000
Dureza (Rockwell R)
115
120
Propiedades térmicas
Coeficiente de expansión lineal (x10-5in/in/°F)
6,1
3,4
Temperatura de distorsión térmica (°C)
80
103
Temperatura máxima de operación (°C)
60
93

Al igual que el procesado del PVC, el CPVC es manufacturado en varios productos por extrusión, inyección y calandrado. La unión y fabricación además puede ser acompañada por soldadura química, soldadura por aire caliente, termoformado, mecanizado y soldadura de láminas por calor.

Aplicaciones
La principal aplicación del CPVC es en reemplazo del PVC en donde su mayor resistencia a la temperatura es requerida. El CPVC es utilizado para cañerías para conducción de fluidos industriales, principalmente calientes, como así también es utilizado en la fabricación de bridas y conectores. Otra aplicación importante es la fabricación de distintos tipos válvulas y carcasas de instrumentos sometidos a ciertos productos químicos y alta temperatura.
Tubos de CPVC
Conectores para tubería
Además de tubos y objetos moldeados por inyección, es posible conseguir CPVC en el comercio en forma de barras de sección variable y láminas o planchas para su moldeo por mecanizado (fresado, torneado, corte, etc.).
Planchas y barras de CPVC
Ductos para drenaje y extracción de humos corrosivos
Debido a sus características el CPVC es apropiado para la construcción de ductos industriales para drenaje y extracción de humos corrosivos aún con alta temperatura como, por ejemplo, para la extracción de humos de ácido crómico en un proceso de galvanoplastía.
Ductos de CPVC para la extracción de ácido crómico en galvanoplastía
Sistema de cañerías para red de incendio
El CPVC se utiliza para fabricar las cañerías de rociadores extintores para sistemas de lucha contra incendios en interiores. Las tuberías de CPVC tienen excelente resistencia al fuego, permitiendo que la deformación por el calor que se retrase. El CPVC es raramente bloqueada por el óxido o similar.
Tubería para rociadores de red de incendios
Cañerías para conducción de líquidos corrosivos calientes
El PVC clorado es utilizado para aplicaciones a temperaturas más altas que el PVC, especialmente para el manejo de líquidos corrosivos calientes. Con resistencia química y corrosiva similar al PVC, el incremento en el contenido de cloro le da al CPVC una resistencia térmica superior. EL CPVC no es recomendable para el uso de hidrocarburos clorados o aromáticos, ésteres, o solventes polares tales como cetonas.
Cañerías de CPVC para la conducción de ácido sulfúrico caliente y tinta
Hidrotomas con abrazaderas
El CPVC puede ser utilizado en sistemas de transición de metal a plástico. Estos se instalan sobre tuberías metálicas y crea un elemento de transición para sistemas de plástico.
Hidrotomas
Válvulas y bridas
El CPVC ha sido diseñado para una amplia gama de aplicaciones como accesorios y válvulas resistentes al calor. El CPVC puede ser moldeado por inyección como bridas y uniones para tubos industriales de gran diámetro.
Válvula de diafragma
Filtros
El CPVC es utilizado para fabricar carcasas de una variedad de sistemas filtrantes en donde es requerida una resistencia al calor superior al PVC como filtros tipo Y o filtros cartucho.
Filtros
Carcasa de dispositivos electrónicos
El CPVC es utilizado como pare de instrumentos electrónicos de medición, en donde, la resistencia al a corrosión y al calor son particularmente necesarios como, por ejemplo, en sensores sumergibles para medición de densidad de líquidos corrosivos o a elevada temperatura.
Hidrómetro Gardco con cabezal de CPVC
Ductos de cable eléctricos
Ductos de CPVC se pueden utilizar para proteger los cables de alta tensión u otros tipos de tendidos eléctricos subterráneos. El CPVC también se puede utilizar para ductos de protección de tuberías o de cables del acondicionador de aire expuestos al aire libre. Se utiliza en particular para phr (cañería frío-calor) oscura que alcanzan altas temperaturas cuando se exponen a la luz solar. El CPVC puede ser recomendado para aplicaciones como una alternativa al uso general del PVC.
Ductos de CPVC para cables de alta tensión subterráneos



Fuentes:
Design of Chlorinated Poly Vinyl Chloride (CPVC) Plant - United Arab Emirates University
http://www.sundow.com
http://www.briconatur.com
http://www.ppia-china.com
http://en.wikipedia.org
http://www.slideshare.net
http://www.supermateriales.com
http://revrok.net
http://www.gardco.com
http://www.iapd.org
http://www.3gplasticos.com
http://specificationonline.co.uk
http://www.thomasnet.com
http://cnchuangrong.en.made-in-china.com
http://www.lubrizol.com

sábado, 9 de noviembre de 2013

Soldadura de plásticos

Introducción
La soldadura de plástico es un proceso destinado a unir piezas constituidas de materiales termoplásticos. La soldadura tiene lugar por el reblandecimiento de las zonas a unir. Las moléculas del polímero adquieren cierta movilidad por acción de un agente externo (calor, vibración, fricción, disolvente, etc.). Al juntarse ambas piezas y aplicárseles presión, se logra la interacción de las moléculas de ambas partes a unir, entrelazándose. Una vez cesada la acción del agente externo, disminuye el movimiento de las moléculas quedando constituida una estructura entrelazada de las mismas, formándose la unión de ambas partes plásticas.
Soldadura de plásticos
En el mercado existen diversos procesos de soldadura para unir plásticos y la aplicación idónea de cada una de ellas depende de múltiples factores. El tipo de pieza o elemento a unir, las características del material plástico, el número de piezas a unir en un mismo proceso, la aplicación del producto final..., son tan solo algunas de las múltiples variables que pueden influir directamente en la elección de un tipo u otro de soldadura.
La soldadura puede ser utilizada para producir uniones con propiedades mecánicas que se acercan a las del material matriz. La soldadura de plástico se limita a los polímeros termoplásticos, debido a que estos materiales pueden ser ablandados y fundidos por el calor. Los polímeros termoestables una vez endurecidos no pueden ser ablandados de nuevo por calefacción. El calor necesario para la soldadura de los polímeros termoplásticos es menor que la requerida para los metales.

Técnicas de soldadura
Un número de técnicas se utilizan para la soldadura de plásticos. En general, las distintas formas de unir piezas plásticas por soldadura se pueden agrupar en cuatro grandes bloques:
- Mediante aportación de calor de un elemento calefactor externo: una técnica que se destina a termoplásticos que, ante al aumento de temperatura, se funden, pudiéndose unir por compresión las superficies fundidas;
- Por emisión de alta frecuencia y ultrasonido: un método que consiste en emitir ondas de una determinada frecuencia en las superficies a unir, generando un efecto de vibración entre las moléculas del material, que provoca un aumento de temperatura y lo reblandece.
- Por emisión de haz láser: un sistema que se reserva para unir piezas pequeñas en áreas determinadas, emitiendo un haz láser que calienta la superficie a soldar;
- Por vibración: un proceso altamente fiable que permite manejar grandes piezas de materiales exigentes o múltiples piezas por ciclo con facilidad.
Otra técnica de soldadura de plásticos que cabría mencionar, bastante empleada tanto a nivel industrial como doméstico, es la soldadura química mediante el uso de solventes.

Procesos
A continuación se detallan brevemente algunas de las principales técnicas de soldadura de termoplásticos empleadas en la industria.

Soldadura por placa caliente
Es la más simple de las técnicas de producción en masa para unir plásticos. Una placa calentada se sujeta entre las superficies a unir hasta que se ablanden. La placa se retira y las superficies se reúnen de nuevo bajo presión controlada durante un período específico.
Las superficies fusionadas se dejan enfriar, formando una unión. La herramienta de soldadura o elemento calefactor está construido comúnmente de calentadores eléctricos insertos en una placa de aluminio.
Las temperaturas son generalmente entre 180°C y 230°C dependiendo del espesor y del tipo del material a soldar.
Etapas del proceso de soldado por placa caliente
Este proceso se utiliza comúnmente para soldar los extremos de tubos de plástico utilizados en la distribución de gas y agua, aguas residuales y evacuación de efluentes y en la industria química, la unión de tubos de llenado y conectores en los tanques de combustible moldeado por soplado para aplicaciones de automoción.
Muchos de los artículos de uso diario son producidos por este proceso: carcazas de aspiradoras, piezas para lavadoras y lavavajillas, piezas de automóviles, tales como depósitos de líquido de frenos, luces traseras, luces indicadoras, etc. La desventaja de este proceso es que es relativamente lento (intervalos de 10 a 20 segundos para artículos pequeños y hasta 30 minutos para tuberías muy grandes). Los platos calientes para el tipo convencional de soldadura (con temperaturas de hasta 300°C) son principalmente de aluminio. Los platos calientes para soldadura de alta temperatura se componen principalmente de aleación de cobre y de aluminio. La temperatura de las placas calientes es controlada por los reguladores electrónicos, con el sensor térmico situado lo más cerca posible a la superficie de trabajo.
Depósito de agua de plancha soldado por placa caliente
Soldadura por aire/gas caliente
Este proceso es similar a la soldadura oxi-acetileno de metales. La única diferencia es que la llama abierta de la soldadura de oxiacetileno se sustituye por una corriente de gas caliente. El aire comprimido, nitrógeno, hidrógeno, oxígeno o dióxido de carbono se calienta mediante una bobina eléctrica a medida que pasa a través de una pistola de soldadura.
La soldadura de gas caliente es un proceso de fabricación para materiales termoplásticos.
El proceso, inventado a mediados del siglo XX, utiliza una corriente de gas caliente, normalmente aire, para calentar y derretir el material del sustrato termoplástico y una varilla de soldadura termoplástica. Se funde el material del sustrato y de la varilla para producir una soldadura. Para garantizar la soldadura, temperatura y presión adecuadas se deben aplicar a la varilla, junto con la correcta velocidad de soldadura y posición de la pistola.
Esquema de soldadura por aire caliente
Las aplicaciones típicas incluyen recipientes de almacenamiento de productos químicos, conducciones de ventilación y reparación de piezas de plástico, tales como los parachoques de automóviles. El nitrógeno se usa para plásticos sensibles al oxígeno. El aire comprimido es muy popular, ya que da resultados satisfactorios para muchos propósitos y es barato.
Los plásticos que pueden ser soldados son: PVC, polietileno, policarbonatos, poliamidas, etc. La principal ventaja de este proceso es que se pueden construir grandes fabricaciones complejas.
Este proceso es lento y la calidad de la soldadura depende totalmente de la habilidad del soldador.
Reparación de pieza plástica de automóvil mediante soldadura de aire caliente
Sellado por calor
El termosellado es el proceso de sellado de un termoplástico a otro termoplástico similar usando calor y presión. Principalmente es aplicado para la unión de películas o láminas plásticas entre sí o para la unión de estas a otro artículo plástico. El método de contacto directo de termosellado utiliza un dado o barra de soldadura constantemente calentado para aplicar calor a un área o línea específica de contacto para sellar o soldar los termoplásticos juntos.
Las aplicaciones comunes para el proceso de sellado térmico son para cierre hermético de bolsas y películas para alimentos o dispositivos médicos esterilizados, fabricación de bolsas, etc. Esta técnica también es utilizada en la industria electrónica para unir las pantallas LCD a los PCB en muchos productos electrónicos de consumo.
Sellado térmico de bolsa con alimentos
Soldadura por extrusión
La soldadura por extrusión permite aplicar soldaduras más grandes en un solo paso de soldadura. Es la técnica preferida para uniones de materiales de más de 6 mm de espesor. La varilla de material de aporte se introduce en una extrusora miniatura de plástico, el material es plastificado y forzado a salir de la extrusora contra las partes a unir, que se suavizan con un chorro de aire caliente para permitir que la unión tenga lugar.
Soldadura por extrusión

Soldadura por inyección
La soldadura por inyección es similar a la soldadura de extrusión, excepto, con algunas variaciones en la soldadora portátil, se puede insertar la punta en los agujeros de defectos de plástico de diferentes tamaños. El Drader injectiweld es un ejemplo de tal herramienta.
Soldadura por inyección

Soldadura por ultrasonido
Este método utiliza vibraciones de alta frecuencia mecánicas para formar la unión. Las piezas a ensamblar se mantienen juntas bajo presión entre el sonotrodo oscilante y un yunque o cuna inmóvil y se someten a vibraciones ultrasónicas de frecuencia de 20 a 40 KHz en ángulo recto con el área de contacto.
Esquema de soldadura por ultrasonido
La acción de la alta frecuencia genera calor en la interfaz común para producir una soldadura de buena calidad. Los equipos para este proceso son bastante caros por lo que se prefiere su uso en grandes series de producción.
La soldadura se limita a los componentes con longitudes de soldadura que no excedan de unos pocos centímetros.
Etapas de soldadura por ultrasonido
Las aplicaciones van desde válvulas y filtros utilizados en equipos médicos, a los cuerpos de cassette, componentes de automoción y carcazas de electrodomésticos.
Piezas soldadas por ultrasonido (luces de bicicleta)
Soldadura por alta frecuencia
Ciertos plásticos con dipolos químicos, tales como PVC, poliuretanos y poliamidas pueden ser calentados con ondas electromagnéticas de alta frecuencia. La soldadura de alta frecuencia utiliza esta propiedad para ablandar los plásticos a unirse. El calentamiento puede ser localizado, y el proceso puede ser continuo. También conocido como sellado dieléctrico o termosellado RF (Radio Frecuencia).
En la soldadura con alta frecuencia (HF) los materiales se unen utilizando la energía de un campo electromagnético (27,12 MHz) y aplicando presión sobre las superficies a soldar. La energía la produce un generador y la herramienta usada para aplicarla se denomina electrodo. La energía eléctrica hace que las moléculas del interior de los materiales empiecen a moverse, lo cual produce calor, que a su vez reblandece los materiales a soldar, que entonces se unen entre sí.
Esquema de soldadura por alta frecuencia
Como ejemplos de aplicaciones de esta técnica pueden citarse toldos para camiones y embarcaciones, lonas plásticas, tiendas y carpas, liners de piscinas, toldos de sol, productos inflables, depósitos para líquidos, pantallas de cine, camas de agua, túneles de ventilación, barreras de contención, etc.
Salvavidas inflable de PVC soldado/sellado por alta frecuencia
Soldadura por láser
La soldadura por láser es adecuada para unir películas y piezas plásticas. Se utiliza un rayo láser para fundir el plástico en la región de la unión. El láser genera un haz intenso de radiación (por lo general en la zona infrarroja del espectro electromagnético), que se centra sobre el material a unir. Esto excita a una frecuencia de resonancia en la molécula, lo que resulta en el calentamiento del material circundante.
Esquema de soldadura por láser
La soldadura por láser es un proceso de producción de alto volumen con la ventaja de no crear vibraciones y la generación de inflamación mínima de la soldadura. Los beneficios de un sistema de láser incluyen; un haz de potencia controlable, lo que reduce el riesgo de la distorsión o daños a los componentes; enfoque preciso del haz de láser permitiendo que se formen uniones precisas en un proceso sin contacto, que es a la vez limpio e higiénico. La soldadura por láser se puede realizar de una manera de disparo único o continuo, pero los materiales a unir requieren de sujeción. Generalmente se utiliza para la unión de un termoplástico transparente al laser (no absorbente del infrarrojo) con un termoplástico opaco absorbente del infrarrojo, el cual se calienta y funde para generar la soldadura.
Las velocidades de soldadura dependen de la absorción de polímero.
Soldadura láser de faro trasero de automóvil
Soldadura por vibración
Este proceso también se conoce como soldadura por fricción lineal. Dos piezas termoplásticas se frotan entre sí bajo presión a una frecuencia y amplitud adecuada, hasta que se genera el calor suficiente para fundir el polímero.
Después se detiene la vibración, las partes se alinean y el polímero fundido se deja solidificar creándose la soldadura. El proceso es similar a soldadura rotatoria, excepto que el movimiento es lineal en lugar de rotatorio. El proceso es rápido, las vibraciones aplicadas normalmente son de 100 - 240 Hz, 1-5 mm de amplitud.
La principal ventaja de este proceso es su capacidad para soldar grandes uniones lineales complejas a altas tasas de producción. Otras ventajas son la capacidad para soldar un número de componentes de forma simultánea, la simplicidad de los equipos y la aptitud para la soldadura de casi todos los materiales termoplásticos.
Equipo para soldadura por fricción lineal
La soldadura por vibración ha encontrado sus principales aplicaciones en la industria del automóvil y de los electrodomésticos.
La soldadura por vibración se puede aplicar a casi todos los materiales termoplásticos, ya sea moldeado por inyección, extruido, moldeado por soplado, termoformado, espumado o estampado.
Depósito de líquido de freno soldado por vibración lineal
Soldadura por fricción (rotacional)
La soldadura por fricción de termoplásticos es también llamada soldadura por frotamiento rotativo. La soldadura por rotación es una forma particular de la soldadura por fricción. En este proceso uno de los sustratos es fijo, mientras que el otro se hace girar con una velocidad angular controlada. Cuando las partes se presionan entre sí, el calor de fricción hace que el polímero funda y una soldadura se crea en el enfriamiento. Los principales parámetros de soldadura incluyen la velocidad de rotación, la presión por fricción, presión de forja, tiempo de soldadura y área de soldadura.
Esquema de soldadura por fricción rotacional
Las ventajas de la soldadura por fricción son la alta calidad de la soldadura y la sencillez y reproducibilidad del proceso. El inconveniente de este proceso es que, en su forma más simple, sólo es adecuada para aplicaciones en las que al menos uno de los componentes es circular y no requiere alineación angular.
Esta es una forma común de producción de bajo y medio costo de ruedas de plástico, por ejemplo, de juguetes o carritos de compra.
Soldador rotacional
Soldadura por disolvente
En la soldadura por disolvente, se aplica un disolvente que pueda disolver temporalmente el polímero a temperatura ambiente. Cuando esto ocurre, las cadenas de polímero son libres de moverse en el líquido y pueden mezclarse con otras cadenas disueltos de manera similar en el otro componente. Dado suficiente tiempo, el disolvente se evapora, de modo que las cadenas pierden su movilidad. Esto deja una masa sólida de cadenas de polímero entrelazadas que constituye una soldadura.
Esta técnica se utiliza comúnmente para la conexión de tuberías de PVC y ABS, como en la tubería de la casa. También es empleada para reparación de piezas plásticas.
Esquema de unión de tubo de PVC por soldadura química
Existe una larga lista de disolventes, tales como tolueno, dicloroetano, acetona, cloroformo, acetato de butilo, ciclohexanona, etc., que por su composición química tienen la propiedad de disolver ciertos materiales plásticos. Uno de los más utilizados es la acetona, que es empleada para la soldadura de piezas de ABS.
Unión de tubería de PVC por soldadura química




Fuentes:
Welding processes for plastics, Advance materials and processes - Robert A.Grimm
http://www.bransoneurope.eu
http://opus.mcerf.org
http://www.eina.es
http://www.dukane.com
http://www.mecasonic.es
http://www.interempresas.net
http://www.weldon.com
http://www.balddesign.com.ar
http://en.wikipedia.org
http://www.drader.com
http://www.plasticsmag.com
http://www.emersonindustrial.com
http://aristegui.info
http://www.weiku.com
http://www.forsstrom.com